1 - Contributors

This section acknowledges the contributions made to the project.

If you contributed to the project please list yourself here with a description of your contribution. We try to update this page based on the git commit history:

Steffen Bollmann

  • https://github.com/stebo85
  • funding: Oracle Cloud (114k AUD), ECR Knowledge Exchange & Translation Fund (42k AUD), ARDC (CI for $566k AUD)
  • system architecture
  • CVMFS container deployment
  • initial desktop container prototype
  • container build scripts
  • application containers (afni, aslprep, code, convert3D, freesurfer, hdbet, minc mriqc, romeo, spm12, tgvqsm, bart, fatsegnet, fsl, itksnap, lcmodel, mritools, niistat, qsmxt, root, slicer, trackvis, ants, cat12, conn, diffusiontoolkit, gimp, mricrogl, mrtrix3, rstudio, slicersalt, surfice, vesselapp, bidstools, clearswi, connectomeworkbench, dsistudio, fmriprep, julia, mrtrix3tissue, palm rabies, spinalcordtoolbox)
  • migrating container recipes and bugfixes to neurodocker upstream (fsl, ants)
  • documentation
  • tutorials (QSM, SWI, Unwrapping, lcmodel, freesurfer)
  • google colab support
  • outreach (e.g. Mastodon, talks at conferences, youtube videos)

Aswin Narayanan

  • https://github.com/aswinnarayanan
  • funding: ARDC (CI for $566k AUD)
  • Neurocontainer devops
  • Neurodesktop development
  • Neurocommand installer rewrite
  • Neurodesk Play & Kubernetes implementation
  • Jupyter notebook support
  • Hugo website build and documentation

Angela Renton

  • https://github.com/air2310
  • Tutorials (MNE-Python, Tutorial template)
  • graphics for website (layer diagram)
  • documentation
  • user testing
  • neurodesk paper lead author

Thuy Dao

  • https://github.com/iishiishii
  • Application search tool with lunr
  • platform independent GUI application (Neurodeskapp)
  • application container development (civet)
  • documentation (github workflow)
  • automated building and testing of example documentation from jupyter notebooks
  • development of interactive container building tool

Oren Civier

  • https://github.com/civier
  • Funding: ARDC Australian Electrophysiology Data Analytics PlaTform (AEDAPT) (CI for $566k AUD) - contributing to initial conceptualisation, EOI writeup, scope of project, proposal writeup, teaming up with the Australian Imaging Service (AIS), recruiting collaborators, assisting collaborators with case studies
  • Design: leading the Virtual Neuro Machine (VNM) hackathon project in the 2020 OHBM BrainHack, where the first version of Neurodesktop was developed
  • Development: allowing Neurodesk containers running in Neurodesktop to access sshfs mounts
  • Development: template for container recipe documentation
  • Development: software application containers - developer (bidscoin, MATLAB; in progress: MMVT)
  • Development: software application containers - facilitator (Fieldtrip, running arbitrary scripts using compiled MATLAB containers; in progress: SOVABIDS)
  • Documentation: for developers (contribution to “add tools”, configuring Github)
  • Documentation: for users (copy and paste troubleshooting, accessing storage, installation on different platforms, using ARDC Virtual Desktop Service, screenshots)
  • Documentation: Neurodesk’s original logo
  • User testing: HPC, NECTAR, Mac, Linux, ARDC Virtual Desktop Service
  • User testing: VNC and RDP interfaces, including multiple concurrent users
  • Outreach: providing assistance to nodes of the Australian National Imaging Facility with installing/using Neurodesk
  • Administration: one of Neurodesk/AEDAPT representatives in ARCOS, AIS and NECTAR Interactive Analytics committees and working groups
  • Papers: co-author Neurodesk manuscript (in preparation; contribution to initial outline, input on first draft), co-author proceedings of the OHBM Brainhack 2021 (to be published in Aperture)

Thomas Shaw

  • https://github.com/thomshaw92
  • Win, Mac, Linux startup scripts
  • initial transparent singularity prototype
  • application container development (LASHiS, ASHS)
  • user testing

Tom Johnstone

Martin Grignard

David White

Akshaiy Narayanan

Kelly Garner

Paris Lyons

  • design of Neurodesk Logo
  • project management of AEDAPT project

Ashley Stewart

  • https://github.com/astewartau
  • application container development (qsmxt)
  • presentation of neurodesk at OHBM Brainhack 2022 and OHBM educational course 2022

Lars Kasper

Judy D Zhu

Korbinian Eckstein

Stefanie Evas

Xincheng Ye

Fernanda Ribeiro

Jeryn Chang

Sin Kim

Jakub Kaczmarzyk

Alan Hockings

Aditya Garg

  • application container development (hdbet)

Kexin Lou

Renzo Huber

Monika Doerig

  • fsl nipype fMRI example

Marcel Zwiers

Steering Committee members without code contributions:

  • Ryan Sullivan, University of Sydney, Key User, Steering Committee
  • Thomas Close, University of Sydney, Key User, Scientific/Subject Expert Advisory Board
  • Wojtek Goscinski, Monash University, Steering Committee, Technical Advisory Board
  • Tony Hannan, Florey Institute of Neuroscience and Mental Health, Scientific/Subject Expert Advisory Board
  • Gary Egan, Monash University, Steering Committee
  • Paul Sowman, Macquarie University, Key User, Scientific/Subject Expert Advisory Board
  • Marta Garrido, University of Melbourne, Key User, Scientific/Subject Expert Advisory Board
  • Patrick Johnston, Queensland University of Technology, Key User, Scientific/Subject Expert Advisory Board
  • Aina Puce, Indiana University, Key User, Scientific/Subject Expert Advisory Board
  • Franco Pestilli, Indiana University, Technical Advisory Board
  • Levin Kuhlmann, Monash University, Key User, Scientific/Subject Expert Advisory Board
  • Gershon Spitz, Monash Epworth Rehabilitation Research Centre, Key User, Scientific/Subject Expert Advisory Board
  • David Abbott, Florey Institute of Neuroscience and Mental Health, Key User, Scientific/Subject Expert Advisory Board
  • Megan Campbell, The University of Newcastle, Key User, Scientific/Subject Expert Advisory Board
  • Nigel Rogasch, University of Adelaide, Key User, Scientific/Subject Expert Advisory Board
  • Will Woods, Swinburne University of Technology, Key User
  • Satrajit Ghosh, Massachusetts Institute of Technology, Provision of advice only

2 - Architecture

The architecture of the Neurodesk ecosystem

2.1 - Neurodesk Architecture

The architecture of the Neurodesk ecosystem

architecture

Neurodesktop is a compact Docker container with a browser-accessible virtual desktop that allows you develop and implement data analysis, pre-equipped with basic fMRI and EEG analysis tools. To get started, see: Neurodesktop (Github)

  • docker container with interface modifications
  • contains tools necessary to manage workflows in sub-containers: vscode, git
  • CI: builds docker image and tests if it runs; tests if CVMFS servers are OK before deployment
  • CD: pushes images to github & docker registry

Neurocommand:

Neurocommand offers the option to install and manage multiple distinct containers for more advanced users who prefer a command-line interface. Neurocommand is the recommended interface for users seeking to use Neurodesk in high performance computing (HPC) environments.

To get started, see: Neurocommand (Github)

  • script to install and manage multiple containers using transparent singularity on any linux system
  • this repo also handles the creation of menu entries in a general form applicable to different desktop environments
  • this repo can be re-used in other projects like CVL and when installing it on bare-metal workstations
  • CI: tests if containers can be installed
  • CD: this repo checks if containers requested in apps.json file are available on object storage and if not converts the singularity containers based on the docker containers and uploads them to object storage

transparent-singularity:

transparent-singularity offers seamless access to applications installed in neurodesktop and neurocommand, treating containerised software as native installations.

More info: transparent-singularity (Github)

  • script to install neuro-sub-containers, installers are called by neurocommand
  • this repo provides a way of using our containers on HPCs for large scale processing of the pipelines (including the support of SLURM and other job schedulers)
  • CI: test if exposing of binaries from container works

Neurocontainers:

neurocontainers contains scripts for building sub-containers for neuroimaging data-analysis software. These containers can be used alongside neurocommand or transparent-singularity.

To get started, see: Neurocontainers (Github)

  • build scripts for neuro-sub-containers
  • CI: building and testing of containers
  • CD: pushing containers to github and dockerhub registry

Neurodocker:

Neurodocker is a command-line program that generates custom Dockerfiles and Singularity recipes for neuroimaging and minifies existing containers.

More info: Github

  • fork of neurodocker project
  • provides recipes for our containers built
  • we are providing pull requests back of recipes
  • CI: handled by neurodocker - testing of generating container recipes

2.2 - Neurodesktop Release Process

A description of what to do to create new release of our Neurodesktop

Neurodesktop:

  1. Check if the last automated build ran OK: https://github.com/NeuroDesk/neurodesktop/actions
  2. Run this build date and test if everything is ok and no regression happened
  3. Check what changes where made since the last release: https://github.com/NeuroDesk/neurodesktop/commits/main
  4. Summarize the main changes and copy this to the Release History: https://www.neurodesk.org/docs/overview/release-history/
  5. Change the version of the latest desktop in https://github.com/NeuroDesk/neurodesk.github.io/blob/main/data/neurodesktop.toml
  6. Commit all changes
  7. Tweet a quick summary of the changes and announce new version: https://masto.ai/@Neurodesk

Neurodesk App:

Release process

Follow these steps to create a new release of the Neurodesk App.

  1. If there’s new version of Neurodesktop image, Github Action will PR with updated jupyter_neurodesk_version in neurodesktop.toml file. Double-check and merge this PR.

  2. Create a new release on GitHub as pre-release. Set the release tag to the value of target application version and prefix it with v (for example v1.0.0 for Neurodesk App version 1.0.0). Enter release title and release notes. Release needs to stay as pre-release for GitHub Actions to be able to attach installers to the release.

  3. Make sure that application is building, installing and running properly.

  4. In the main branch, create a branch preferably with the name release-v<new-version>. Add a commit with the version changes in package.json file. This is necessary for GitHub Actions to be able to attach installers to the release. (for example "version": "1.0.0").

  5. GitHub Actions will automatically create installers for each platform (Linux, macOS, Windows) and upload them as release assets. Assets will be uploaded only if a release of type pre-release with tag matching the Neurodesk App’s version with a v prefix is found. For example, if the Neurodesk App version in the PR is 1.0.0, the installers will be uploaded to a release that is flagged as pre-release and has a tag v1.0.0. New commits to this branch will overwrite the installer assets of the release.

  6. Once all the changes are complete, and installers are uploaded to the release then publish the release.

Update MacOS certificate

Follow these step-by-step instructions to generate and export the required Macos certificate for Neurodesk App release.

  1. Launch the “Keychain Access” application on your Mac, go to “Certificate Assistant.”
  2. Request Certificate from Certificate Authority: Within “Certificate Assistant,” select “Request a Certificate from a Certificate Authority.”
  3. Follow the URL to access the Apple Developer website: https://developer.apple.com/account/resources/certificates/add, upload the generated certificate.
  4. After uploading the certificate, download the resulting file provided by the Apple Developer website.
  5. Import the Certificate in Keychain.
  6. Right-click the imported certificate in “Keychain Access.”, choose “Export” and save it in .p12 format.
  7. Convert the .p12 file to Base64 using the following command: openssl base64 -in neurodesk_certificate.p12

2.3 - Neurodesktop Dev

Testing the latest dev version of Neurodesktop

Building neurodesktop-dev

Dev builds can be triggered by Neurodesk admins from https://github.com/NeuroDesk/neurodesktop/actions/workflows/build-neurodesktop-dev.yml

Running latest neurodesktop-dev

Linux

docker pull vnmd/neurodesktop-dev:latest
sudo docker run \
  --shm-size=1gb -it --cap-add SYS_ADMIN \
  --security-opt apparmor:unconfined --device=/dev/fuse \
  --name neurodesktop-dev \
  -v ~/neurodesktop-storage:/neurodesktop-storage \
  -e NB_UID="$(id -u)" -e NB_GID="$(id -g)" \
  -p 8888:8888 -e NEURODESKTOP_VERSION=dev \
  vnmd/neurodesktop-dev:latest

Windows

docker pull vnmd/neurodesktop-dev:latest
docker run --shm-size=1gb -it --cap-add SYS_ADMIN --security-opt apparmor:unconfined --device=/dev/fuse --name neurodesktop -v C:/neurodesktop-storage:/neurodesktop-storage -p 8888:8888 -e NEURODESKTOP_VERSION=dev vnmd/neurodesktop-dev:latest

2.4 - Transparent Singularity

For more advanced users who wish to use Transparent Singularity directly

Transparent singularity is here https://github.com/NeuroDesk/transparent-singularity/

This project allows to use singularity containers transparently on HPCs, so that an application inside the container can be used without adjusting any scripts or pipelines (e.g. nipype).

Important: add bind points to .bashrc before executing this script

This script expects that you have adjusted the Singularity Bindpoints in your .bashrc, e.g.:

export SINGULARITY_BINDPATH="/gpfs1/,/QRISdata,/data"

This gives you a list of all tested images available in neurodesk:

https://github.com/NeuroDesk/neurocommand/blob/main/cvmfs/log.txt

curl -s https://raw.githubusercontent.com/NeuroDesk/neurocommand/main/cvmfs/log.txt

Clone repo into a folder with the intended image name

git clone https://github.com/NeuroDesk/transparent-singularity convert3d_1.0.0_20210104

Install

This will create scripts for every binary in the container located in the $DEPLOY_PATH inside the container. It will also create activate and deactivate scripts and module files for lmod (https://lmod.readthedocs.io/en/latest)

cd convert3d_1.0.0_20210104
./run_transparent_singularity.sh convert3d_1.0.0_20210104

Options for Transparent singularity:

  • --storage - this option can be used to force a download from docker, e.g.: --storage docker
  • --container - this option can be used to explicitly define the container name to be downloaded
  • --unpack - this will unpack the singularity container so it can be used on systems that do not allow to open simg / sif files for security reasons, e.g.: --unpack true
  • --singularity-opts - this will be passed on to the singularity call, e.g.: --singularity-opts '--bind /cvmfs'

Use in module system LMOD

Add the module folder path to $MODULEPATH

Manual activation and deactivation (in case module system is not available). This will add the paths to the .bashrc

Activate

source activate_convert3d_1.0.0_20210104.sh

Deactivate

source deactivate_convert3d_1.0.0_20210104.sif.sh

Uninstall container and cleanup

./ts_uninstall.sh

2.5 - Neurodesk CVMFS

How to interact with our CVMFS service.

2.5.1 - Setup CVMFS Proxy

Setup CVMFS Proxy server

If you want more speed in a region one way could be to setup another Stratum 1 server or a proxy. We currently don’t run any proxy servers but it would be important for using it on a cluster.

Setup a CVMFS proxy server

sudo yum install -y squid

Open the squid.confand use the following configuration

sudo vi /etc/squid/squid.conf
# List of local IP addresses (separate IPs and/or CIDR notation) allowed to access your local proxy
#acl local_nodes src YOUR_CLIENT_IPS

# Destination domains that are allowed
acl stratum_ones dstdomain .neurodesk.org
#acl stratum_ones dstdom_regex YOUR_REGEX

# Squid port
http_port 3128

# Deny access to anything which is not part of our stratum_ones ACL.
http_access deny !stratum_ones

# Only allow access from our local machines
#http_access allow local_nodes
http_access allow localhost

# Finally, deny all other access to this proxy
http_access deny all

minimum_expiry_time 0
maximum_object_size 1024 MB

cache_mem 128 MB
maximum_object_size_in_memory 128 KB
# 5 GB disk cache
cache_dir ufs /var/spool/squid 5000 16 256
sudo squid -k parse
sudo systemctl start squid
sudo systemctl enable squid
sudo systemctl status squid
sudo systemctl restart squid

Then add the proxy to the cvmfs config:

CVMFS_HTTP_PROXY="http://proxy-address:3128"

2.5.2 - CVMFS architecture

CVMFS architecture

We store our singularity containers unpacked on CVMFS. We tried the DUCC tool in the beginning, but it was causing too many issues with dockerhub and we were rate limited. The script to unpack our singularity containers is here: https://github.com/NeuroDesk/neurocommand/blob/main/cvmfs/sync_containers_to_cvmfs.sh

It gets called by a cronjob on the CVMFS Stratum 0 server and relies on the log.txt file being updated via an action in the neurocommand repository (https://github.com/NeuroDesk/neurocommand/blob/main/.github/workflows/upload_containers_simg.sh)

The Stratum 1 servers then pull this repo from Stratum 0 and our desktops mount these repos (configured here: https://github.com/NeuroDesk/neurodesktop/blob/main/Dockerfile)

The startup script (https://github.com/NeuroDesk/neurodesktop/blob/main/config/jupyter/before_notebook.sh) sets up CVMFS and tests which server is fastest during the container startup.

This can also be done manually:

sudo cvmfs_talk -i neurodesk.ardc.edu.au host info
sudo cvmfs_talk -i neurodesk.ardc.edu.au host probe
cvmfs_config stat -v neurodesk.ardc.edu.au

2.5.3 - Setup Stratum 0 server

Host a Stratum 0 server

Setup a Stratum 0 server:

Setup Storage

(would object storage be better? -> see comment below under next iteration ideas)

lsblk -l
sudo mkfs.ext4 /dev/vdb
sudo mkdir /storage
sudo mount /dev/vdb /storage/ -t auto
sudo chown ec2-user /storage/
sudo chmod a+rwx /storage/
sudo vi /etc/fstab
/dev/vdb  /storage    auto    defaults,nofail   0  2

Setup server

sudo yum install vim htop gcc git screen
sudo timedatectl set-timezone Australia/Brisbane

sudo yum install -y https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest.noarch.rpm
sudo yum install -y cvmfs cvmfs-server

sudo systemctl enable httpd
sudo systemctl restart httpd

# sudo systemctl stop firewalld

# restore keys:
sudo mkdir /etc/cvmfs/keys/incoming
sudo chmod a+rwx /etc/cvmfs/keys/incoming
cd connections/cvmfs_keys/
scp neuro* ec2-user@203.101.226.164:/etc/cvmfs/keys/incoming
sudo mv /etc/cvmfs/keys/incoming/* /etc/cvmfs/keys/

#backup keys: 
#mkdir cvmfs_keys
#scp opc@158.101.127.61:/etc/cvmfs/keys/neuro* .

sudo cvmfs_server mkfs -o $USER neurodesk.ardc.edu.au

cd /storage
sudo mkdir -p cvmfs-storage/srv/
cd /srv/
sudo mv cvmfs/ /storage/cvmfs-storage/srv/
sudo ln -s /storage/cvmfs-storage/srv/cvmfs/

cd /var/spool
sudo mkdir /storage/spool
sudo mv cvmfs/ /storage/spool/
sudo ln -s  /storage/spool/cvmfs .

cvmfs_server transaction neurodesk.ardc.edu.au

cvmfs_server publish neurodesk.ardc.edu.au
sudo vi /etc/cron.d/cvmfs_resign
0 11 * * 1 root /usr/bin/cvmfs_server resign neurodesk.ardc.edu.au
cat /etc/cvmfs/keys/neurodesk.ardc.edu.au.pub
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAuV9JBs9uXBR83qUs7AiE
nSQfvh6VCdNigVzOfRMol5cXsYq3cFy/Vn1Nt+7SGpDTQArQieZo4eWC9ww2oLq0
vY1pWyAms3Y4i+IUmMbwNifDU4GQ1KN9u4zl9Peun2YQCLE7mjC0ZLQtLM7Q0Z8h
NwP8jRJTN+u8mRKzkyxfSMLscVMKhm2pAwnT1zB9i3bzVV+FSnidXq8rnnzNHMgv
tfqx1h0gVyTeodToeFeGG5vq69wGZlwEwBJWVRGzzr+a8dWNBFMJ1HxamrBEBW4P
AxOKGHmQHTGbo+tdV/K6ZxZ2Ry+PVedNmbON/EPaGlI8Vd0fascACfByqqeUEhAB
dQIDAQAB
-----END PUBLIC KEY-----

Next iteration of this:

use object storage?

  • current implementation uses block storage, but this makes increasing the volume size a bit more work
  • we couldn’t get object storage to work on Oracle as it assumes AWS S3 -> Try again on AWS

Optimize settings for repositories for Container Images

from the CVMFS documentation: Repositories containing Linux container image contents (that is: container root file systems) should use overlayfs as a union file system and have the following configuration:

CVMFS_INCLUDE_XATTRS=true
CVMFS_VIRTUAL_DIR=true

Extended attributes of files, such as file capabilities and SElinux attributes, are recorded. And previous file system revisions can be accessed from the clients.

Currently not used

We tested the DUCC tool in the beginning, but it was leading to too many docker pulls and we therefore replaced it with our own script: https://github.com/NeuroDesk/neurocommand/blob/main/cvmfs/sync_containers_to_cvmfs.sh

This is the old DUCC setup

sudo yum install cvmfs-ducc.x86_64
sudo -i
dnf install -y yum-utils 
yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
dnf install docker-ce docker-ce-cli containerd.io
systemctl enable docker
systemctl start docker
docker version
docker info

# leave root mode

sudo groupadd docker
sudo usermod -aG docker $USER
sudo chown root:docker /var/run/docker.sock
newgrp docker


vi convert_appsjson_to_wishlist.sh
export DUCC_DOCKER_REGISTRY_PASS=configure_secret_password_here_and_dont_push_to_github
cd neurodesk
git pull
./gen_cvmfs_wishlist.sh
cvmfs_ducc convert recipe_neurodesk_auto.yaml
cd ..


chmod +x convert_appsjson_to_wishlist.sh

git clone https://github.com/NeuroDesk/neurodesk/

# setup cron job
sudo vi /etc/cron.d/cvmfs_dockerpull
*/5 * * * * opc cd ~ && bash /home/opc/convert_appsjson_to_wishlist.sh



#vi recipe.yaml

##version: 1
#user: vnmd
#cvmfs_repo: neurodesk.ardc.edu.au
#output_format: '$(scheme)://$(registry)/vnmd/thin_$(image)'
#input:
#- 'https://registry.hub.docker.com/vnmd/tgvqsm_1.0.0:20210119'
#- 'https://registry.hub.docker.com/vnmd/itksnap_3.8.0:20201208'


#cvmfs_ducc convert recipe_neurodesk.yaml
#cvmfs_ducc convert recipe_unpacked.yaml

2.5.4 - Setup Stratum 1 server

Host a Stratum 1 server

The stratum 1 servers for the desktop are configured here: https://github.com/NeuroDesk/neurodesktop/blob/main/Dockerfile

If you want more speed in a region one way could be to setup another Stratum 1 server or a proxy.

Setup a Stratum 1 server (This setup works best on Rocky Linux 9):

sudo yum install -y https://ecsft.cern.ch/dist/cvmfs/cvmfs-release/cvmfs-release-latest.noarch.rpm
sudo yum install -y cvmfs-server squid tmux
sudo yum install -y python3-mod_wsgi 

sudo dnf install dnf-automatic -y
sudo systemctl enable dnf-automatic-install.timer
sudo systemctl status dnf-automatic-install
sudo systemctl cat dnf-automatic-install.timer
sudo vi /etc/dnf/automatic.conf
# check if automatic updates are downloaded and applied

tmux new -s cvmfs

sudo sed -i 's/Listen 80/Listen 127.0.0.1:8080/' /etc/httpd/conf/httpd.conf

set +H
echo "http_port 80 accel" | sudo tee /etc/squid/squid.conf
echo "http_port 8000 accel" | sudo tee -a /etc/squid/squid.conf
echo "http_access allow all" | sudo tee -a /etc/squid/squid.conf
echo "cache_peer 127.0.0.1 parent 8080 0 no-query originserver" | sudo tee -a /etc/squid/squid.conf
echo "acl CVMFSAPI urlpath_regex ^/cvmfs/[^/]*/api/" | sudo tee -a /etc/squid/squid.conf
echo "cache deny !CVMFSAPI" | sudo tee -a /etc/squid/squid.conf
echo "cache_mem 128 MB" | sudo tee -a /etc/squid/squid.conf

sudo systemctl start httpd
sudo systemctl start squid
sudo systemctl enable httpd
sudo systemctl enable squid

echo 'CVMFS_GEO_ACCOUNT_ID=APPLY_FOR_ONE_THIS_IS_a_SIX_DIGIT_NUMBER' | sudo tee -a /etc/cvmfs/server.local
echo 'CVMFS_GEO_LICENSE_KEY=APPLY_FOR_ONE_THIS_IS_a_password' | sudo tee -a /etc/cvmfs/server.local
sudo chmod 600 /etc/cvmfs/server.local

sudo mkdir -p /etc/cvmfs/keys/ardc.edu.au/

echo "-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAwUPEmxDp217SAtZxaBep
Bi2TQcLoh5AJ//HSIz68ypjOGFjwExGlHb95Frhu1SpcH5OASbV+jJ60oEBLi3sD
qA6rGYt9kVi90lWvEjQnhBkPb0uWcp1gNqQAUocybCzHvoiG3fUzAe259CrK09qR
pX8sZhgK3eHlfx4ycyMiIQeg66AHlgVCJ2fKa6fl1vnh6adJEPULmn6vZnevvUke
I6U1VcYTKm5dPMrOlY/fGimKlyWvivzVv1laa5TAR2Dt4CfdQncOz+rkXmWjLjkD
87WMiTgtKybsmMLb2yCGSgLSArlSWhbMA0MaZSzAwE9PJKCCMvTANo5644zc8jBe
NQIDAQAB
-----END PUBLIC KEY-----" | sudo tee /etc/cvmfs/keys/ardc.edu.au/neurodesk.ardc.edu.au.pub


sudo cvmfs_server add-replica -o $USER http://stratum0.neurodesk.cloud.edu.au/cvmfs/neurodesk.ardc.edu.au /etc/cvmfs/keys/ardc.edu.au

# CVMFS will store everything in /srv/cvmfs so make sure there is enough space or create a symlink to a bigger storage volume
# e.g.:
<!-- cd /storage
sudo mkdir -p cvmfs-storage/srv/
cd /srv/
sudo mv cvmfs/ /storage/cvmfs-storage/srv/
sudo ln -s /storage/cvmfs-storage/srv/cvmfs/ -->


sudo cvmfs_server snapshot neurodesk.ardc.edu.au


echo "/var/log/cvmfs/*.log {
    weekly
    missingok
    notifempty
}" | sudo tee /etc/logrotate.d/cvmfs


echo '*/5 * * * * root output=$(/usr/bin/cvmfs_server snapshot -a -i 2>&1) || echo "$output" ' | sudo tee /etc/cron.d/cvmfs_stratum1_snapshot

sudo yum install iptables
sudo iptables -t nat -A PREROUTING -p tcp -m tcp --dport 80 -j REDIRECT --to-ports 8000

sudo systemctl disable firewalld 
sudo systemctl stop firewalld 
# make sure that port 80 is open in the real firewall

sudo cvmfs_server update-geodb

#test
curl --head http://YOUR_IP_OR_DNS/cvmfs/neurodesk.ardc.edu.au/.cvmfspublished

2.6 - Project Roadmap

This page lists ideas we have planned for Neurodesk - If any of these things sound exciting to you, get in touch and we help you to become a contributor.

All things we are currently working on and are planning to do are listed here: https://github.com/orgs/NeuroDesk/projects/9/views/4

The larger themes and subthemes are:

Streamlining container build and release process

Improving the workflow of how users can add new applications to Neurodesk

Adding new applications to Neurodesk requires multiple steps and back-and-forth between contributors and maintainers. We are aiming to simplify this process by developing an interactive workflow based on our current interactive container builder and the existing github workflows.

Some issues in this theme are:

Standardizing the container deployment

Currently, deploying the application containers happens through a connection of various custom scripts distributed across various repositories (apps.json in neurocommand repository, neurocontainers, transparent singularity). We would like to adopt community standard tools, like SHPC, that can perform some of these tasks. The goal is to remove duplication of effort and maintenance.

Some issues in this theme are:

Reuse and citability of containers

Currently, there is no good way of describing and citing the individual software containers. We want to increase the reusability and citability of the software containers.

Some issues in this theme are:

Improving user experience

Improving documentation

We would love to have more tutorials and examples that help people perform Neuroimaging analyses in Neurodesk. When we developed our current documentation system (https://www.neurodesk.org/tutorials-examples/), we wanted to develop an interactive documentation system that ensures that examples always work correctly because they are automatically tested. We have a first proof-of-concept that runs jupyter notebooks and converts them to a website: https://www.neurodesk.org/example-notebooks/intro.html - but currently errors are not flagged automatically and it needs manual checking.

Some issues in this theme are:

Facilitating the use of Neurodesk in teaching and workshops

Neurodesk is a great fit for teaching Neuroimaging methods. Currently, however, it’s not easy to run a custom Neurodesk instance for a larger group. We would like to make it easier for users to deploy Neurodesk for classes and workshops with a shared data storage location and we would love to support advanced features for cost saving (e.g. autoscaling, support of ARM processors) on various cloud providers (e.g. Google Cloud, Amazon, Azure, OpenStack, OpenShift).

Support of advanced workflows

Deeper Integration of containers and jupyter notebook system

We want to integrate the software containers deeper into the jupyter notebook system. Ideally, it is possible to use a jupyter kernel from within a software container.

Some issues in this theme are:

Support of scheduling workflows

Currently, all Neurodesk work is entirely interactive. We want to add a way of scheduling workflows and jobs so that larger computations can be managed efficiently.

Some issues in this theme are:

3 - NeuroDesk Copilot

NeuroDesk Copilot: How to use LLMs for code autocompletion, chat support in NeuroDesk ecosystem

3.1 - NeuroDesk Copilot using Github Copilot

NeuroDesk Copilot: How to use LLMs for code autocompletion, chat support in NeuroDesk ecosystem

Neurodesk Copilot: Using Github Copilot inside NeuroDesk Environment

This guide provides detailed instructions on how to set up and use GitHub Copilot in the NeuroDesk environment, enabling code autocompletion, real-time chat assistance, and code generation.

Step 1: Login with Github and follow the Instruction below:

  1. Make sure you have a GitHub account with a valid GitHub Copilot subscription or access. If you are an eligible student, teacher, or open-source maintainer, you can access GitHub Copilot Pro for free. See Getting free access to Copilot Pro as a student, teacher, or maintainer.
  2. Log in to NeuroDesk app or Neurodesktop using the GitHub single sign-on (SSO) option.
  3. Grant permission to GitHub Copilot when prompted to ensure Copilot can operate within your NeuroDesk environment.

Login with Github

Step 2: Use chat interface

  1. Open the Chat feature in NeuroDesk and type your query or command. Examples:
    • “Explain how to apply a Fourier Transform in NumPy.”
    • “Help me debug my data-loading function.”
  2. Press Enter. NeuroDesk Copilot will respond with explanations, tips, or suggested code.

Chat feature

Step 3: Code completion

  1. Begin typing your code within a cell in NeuroDesk. As you type, Copilot provides inline suggestions. You can accept suggestions by pressing Tab key.
  2. If the suggestion isn’t relevant, continue typing or press Escape to dismiss it.

Code completion

Step 4: Generate code

  1. When you need a larger block of code or a specific function, ask Copilot directly in the chat or as an inline comment. For example:
    • “Generate a Python function that reads EEG data from a CSV, cleans noise, and plots the channels.”
  2. Copilot will produce a snippet of code you can accept, edit, or reject entirely.

Generate Code

Configuring LLM Provider and models

You can configure the model provider and model options using the Notebook Intelligence Settings dialog. You can access this dialog from JupyterLab Settings menu -> Notebook Intelligence Settings, using /settings command in Copilot Chat or by using the command palette.

3.2 - NeuroDesk Copilot using Local LLMs

NeuroDesk Copilot: How to use LLMs for code autocompletion, chat support in NeuroDesk ecosystem

Neurodesk Copilot: Using Locally hosted LLMs inside Neurodesk Environment

Configuring LLM Provider and models

NeuroDesk Copilot allows you to harness the capabilities of local Large Language Models (LLMs) for code autocompletion and chat-based assistance, directly within your NeuroDesk environment. This guide demonstrates how to configure Ollama as your local LLM provider and get started with chat and inline code completion. You can configure the model provider and model options using the Notebook Intelligence Settings dialog. You can access this dialog from JupyterLab Settings menu -> Notebook Intelligence Settings, using /settings command in Copilot Chat or by using the command palette.

Step 1: Choose Ollama and Neurodesk copilot: type /settings in chat interface and choose Ollama and neurodesk model and save settings

Choose Jupyter-AI settings

Step 2: Use chat interface

  1. Open the Chat feature in NeuroDesk and type your query or command. Examples:
    • “Explain how to import MRI dataset in python.”
    • “Help me debug my data-loading function.”
  2. Press Enter. NeuroDesk Copilot will respond with explanations, tips, or suggested code.

Chat feature

Step 3: Code completion

  1. Begin typing your code within a cell in NeuroDesk. As you type, Copilot provides inline suggestions. You can accept suggestions by pressing Tab key.
  2. If the suggestion isn’t relevant, continue typing or press Escape to dismiss it.

Code completion

Feel free to update the settings to disable auto completer to manual invocation in Settings -> Settings Editor -> Inline Completer

4 - Documentation

How to edit the documentation

4.1 - Designer Guide

Guidelines for visual consistency, colors, typography, logos, and imagery across Neurodesk platforms.

NeuroDesk Design Style Guide

This style guide provides clear standards to ensure visual consistency across all Neurodesk platforms and materials.

Brand Overview

Neurodesk is a Neurodesk, a community-oriented open-source solution for neuroimaging analysis with four guiding principles: accessibility, portability, flexibility and, overarchingly, reproducibility. This guide ensures visual consistency across all Neurodesk products and documentation.

Logo Usage (TBC)

⚠️ Work in Progress: This section will provide detailed logo guidelines once finalized.

Acceptable Logo Usage (TBC)

  • Examples of acceptable usage (size, orientation, backgrounds).

Improper Logo Usage (TBC)

  • What to avoid (stretching, recoloring, busy backgrounds).

Color Palette

Primary Colors

Color NameHex CodeRGB CodeUsage
Seafoam green ◼︎#6aa329(106, 163, 41)Primary actions

Secondary Colors

Color NameHex CodeRGB CodeUsage
Black ◼︎#0c0e0a(5, 8, 2)Regular text
Darkest green ◼︎#161c10(16, 24 6)Successful selection
Muted olive green ◼︎#1e2a16(26, 41, 10)
Dark olive green ◼︎#4f7b38(79, 122, 31)
Light green ◼︎#b7d886(181, 224, 133)
Lighter green ◼︎#d3e7b6(211, 237, 182)
Verdant Haze ◼︎#e6f1d6(230, 245, 214)Unseletected buttons
Pale Lime Green ◼︎#f0f7e7(240, 249, 231)
White ◼︎#ffffff(255, 255, 255)

Typography

Font Families

  • Logo: Bank gothic
  • Headings: Pontano
  • Body Text: Pontano
  • Code blocks: Consolas

4.2 - Local Hugo Docsy

How to edit the documentation

Local Hugo Docsy in Linux and WSL2

https://github.com/NeuroDesk/neurodesk.github.io/blob/main/CONTRIBUTING.md

Local Hugo Docsy in Windows

Clone repository

Using SSH

git clone --recurse-submodules git@github.com:NeuroDesk/neurodesk.github.io.git

or Https:

git clone --recurse-submodules https://github.com/NeuroDesk/neurodesk.github.io.git

If you cloned without –recurse-submodules

Run the following command to pull submodules

git submodule update --init --recursive --remote

Download Hugo binary

Hugo releases are on https://github.com/gohugoio/hugo/releases

Download latest version of hugo extended

e.g. for windows: https://github.com/gohugoio/hugo/releases/download/v0.88.1/hugo_extended_0.88.1_Windows-64bit.zip

Start local hugo server

Extract hugo binary (hugo.exe) to your neurodesk.github.io dir

Run server for windows: .\hugo.exe server --disableFastRender

Once started, dev website will be accessible via http://localhost:1313

Update docsy theme submodule

git submodule update --remote
git add themes/
git commit -m "Updating theme submodule"
git push origin main

5 - How to add new tools

How to add new tools to neurodesk

Guiding principles

To decide if a tool should be packaged in a Neurocontainers or be installed in the Neurodesktop container, we are currently following these guiding principles:

1) Neurodesk is a Platform, Not a Package Manager: We don’t distribute tools that can be easily installed via standard package managers.

2) Multiple versions of tools: Neurodesk supports the use of multiple versions of a tool in parallel via lmod. If a tool doesn’t support this, follow this instruction to package it in Neurocontainers.

3) Inter-Container Tool Linking: Neurodesk is designed to facilitate the linking of tools from different containers, such as workflow managers like nipype or nextflow. Therefore, if a tool is needed to coordinate various container-tools, create an issue to have it installed directly in the Neurodesktop container.

Examples:

easy installcoordinates containerssmall in sizelatest version is okuseful to most usersConclusion
gityesyesyesyesyesneurodesktop
lmodnoyesyesyesyesneurodesktop
itksnapyesnoyesyesyesneurocontainer
convert3Dyesnoyesnononeurocontainer
fslnonononononeurocontainer

Adding new tools to Neurocontainers:

Follow these instructions to add new tools: https://www.neurodesk.org/developers/new_tools/manual_build

5.1 - New tool

How to contribute a new container.

We just launched our new container build system. Some documentation can already be found here: https://github.com/NeuroDesk/neurocontainers/tree/main/builder

More will follow here soon!

5.2 - Update tool

How to update an existing Neurodesk container.

We just launched our new container build system. Some documentation can already be found here: https://github.com/NeuroDesk/neurocontainers/tree/main/builder

More will follow here soon!